آرشیو برچسب: مزایای کامپوزیت

۰۴بهمن/۹۳
kompozit-panel

کامپوزیت (مزایا،معایب،کاربرد)

 تعریف:

کامپوزیت ها (Composites) در دسته بندی مواد، جز مواد پیشرفته می باشند که کاربرد های آنها در صنایع و زمینه های مختلف روز به روز در حال گسترش است. کامپوزیت، ماده همگنی بوده که از ترکیب دو یا چند جزء، جهت دستیابی به خواص متالورژیکی مطلوب به وجود آمده است. این اجزاء در مقیاس ماکروسکوپی با هم ترکیب شده ولی در یکدیگر قابل حل نیستند. بیشتر کامپوزیت ها از دو جزء ساخته می شوند:

۱- زمینه؛

جزء پایه در کامپوزیت ها را زمینه می نامند.

۲- تقویت کننده؛

جزء افزودنی به زمینه کامپوزیت ها را تقویت کننده می نامند. تقویت کننده ها عموما محکم تر و صلب تر از زمینه بوده و در حقیقت خواص مطلوب کامپوزیت را در آن ایجاد می کنند. چون ذرات تقویت کننده اغلب به طور مجزا در زمینه قرار می گیرند، زمینه، وظیفه تقسیم نیرو را بین آن ها بر عهده دارد.  

خواص کامپوزیت ها

برخی از مشخصه های بارز کامپوزیت ها که موجب گسترش روزافزون آنها شده است، به شرح زیر می باشد:

  •  استحکام ویژه

این پارامتر استحکام ماده را در ارتباط با وزن آن نشان می دهد. برای مثال، برخی کامپوزیت ها مانند فایبر گلاس دارای مقاومت به ضربه بسیار بالاتری نسبت به فولاد و تیتانیوم، در مقایسه با وزن به کار رفته از هر کدام از آن ها می باشد.

  • قیمت

 برخی از محصولات کامپوزیتی دارای قیمت کمتری از محصولات مشابه فلزی هستند ولی باید خاطر نشان کرد که در برخی از کامپوزیت های پیچیده که کیفیت بسیار خوبی دارند، هزینه ساخت آن ها بسیار گران می باشد.

  •  فرآوری

 در مقایسه با فرآوری فلزات که نیازمند مقادیر بالاتری انرژی گرمایی می باشد، کامپوزیت های زمینه فلزی و پلیمری نیازمند انرژی کمتری برای شکل گیری و یا عمل آوری هستند. برخی از کامپوزیت ها در دمای پایین قابلیت فرآوری داشته و وقتی پخت می شوند دارای خواص ضربه ای بالا و مقاومت حرارتی خوبی می شوند.

مزایا و معایب کامپوزیت ها

مزایای کامپوزیت ها

  • داشتن نسبت استحکام به وزن و نسبت سفتی به وزن بالا
  • غیر خورنده، غیر مغناطیسی بودن
  • دارای خاصیت جذب انرژی مناسب
  • دارای عمر خستگی بالا (وقتی اتفاق می افتد که فلز تحت تنش تکراری یا نوسانی قرار گیرد که منجر به شکست ناگهانی قطعه می گردد. )
  • توانایی قرار دادن سنسور درون مواد جهت کنترل کارکرد درست یا نادرست کامپوزیت ( کامپوزیت های هوشمند )
  • سهولت در ساخت ساختار های با اشکال پیچیده

معایب کامپوزیت ها

  • قیمت بالای مواد خام و فرآیند ساخت
  • تافنس ( مقاومت در برابر ضربه ) پایین
  • آلایندگی محیط زیست مخصوصا در مورد کامپوزیت های زمینه پلیمری

کاربرد کامپوزیت ها

کامپوزیت ها به علت داشتن مزایا و خواص مناسب، گستره کاربردی وسیعی بین مواد پیدا کرده اند که برخی از این کاربردها در ذیل آورده شده است:

  1. مخازن سوخت و لوله ها
  2. صنایع نظامی
  3. صنایع خودرویی
  4. سازه های دریایی
  5. صنعت ساختمان
  6. تجهیزات ورزشی
  7. پزشکی

طبقه بندی کامپوزیت ها بر مبنای فاز زمینه

کامپوزیت ها بر مبنای نوع مواد زمینه به سه گروه زیر تقسیم می شوند :

۱- کامپوزیت های زمینه پلیمری

به دلیل قابلیت شکل پذیری آسان، وزن کم و خواص مکانیکی مطلوب، پلیمر به عنوان یک ماده آیده ­ال در زمینه کامپوزیت ها به شمار می رود. رایج ترین زمینه های پلیمری، رزین های اپوکسی و رزین های پلی استر هستند. از این رو رزین هایی که توانایی کار در دمای بالا را دارند به طور گسترده مورد توجه قرار دارند. چنانچه مواد زمینه از جنس پلاستیک باشد، به این کامپوزیت ها، پلاستیک های مقاوم شده نیز گفته می شود.

۲- کامپوزیت های زمینه فلزی

استحکام بالا، چقرمگی شکست و سفتی از جمله خواصی است که موجب گسترش مصارف کامپوزیت های زمینه فلزی در مقایسه با کامپوزیت های زمینه پلیمری شده است. این مواد مقاومت بیشتری در محیط های خورنده و درجه حرارت های بالا نسبت به پلیمرها دارند. بیشتر فلزات و آلیاژها می توانند به عنوان فاز زمینه در کامپوزیت ها استفاده شوند. تیتانیوم، آلومینیوم و منیزیم از جمله فلزات مرسومی هستند که عموما در  کامپوزیت های مصرفی در قطعات هواپیما به عنوان بکار می روند. چنانچه کامپوزیت زمینه فلزی با استحکام بالا مورد نیاز باشد، لازم است که از تقویت کننده هایی با مدول بالا استفاده شود. نقطه ذوب، خواص فیزیکی و شیمیایی کامپوزیت ها در دماهای مختلف، تعیین کننده دمای مناسب برای استفاده از آن ها می باشد.

۳- کامپوزیت های زمینه سرامیکی

سرامیک ها به عنوان مواد جامدی که پیوند های یونی بسیار قوی و در برخی موارد پیوند های کوالانسی دارند، شناخته می شوند. نقطه ذوب بالا، مقاومت در برابر خوردگی مناسب، پایداری در دمای بالا و استحکام فشاری خوب، باعث شده است که کامپوزیت های زمینه سرامیکی در ساختار قطعاتی که در دمای بالاتر از ۱۵۰۰ درجه سانتیگراد کار می کنند، مورد استفاده قرار بگیرند.

مدول الاستیسیته بالا و کرنش کششی پایین در اکثر مواد سرامیکی منجر به شکست این قطعات می شود، لذا استفاده از تقویت کننده هایی که استحکام را بهبود ببخشند، لازم بنظر می رسد که بدین منظور تقویت کننده هایی با مدول الاستیسیته بالا توصیه می شود. چنانچه سرامیک زمینه ضریب انبساط حرارتی بالاتری از مواد تقویت کننده داشته باشد، این امر منجر به عدم بالا رفتن استحکام در کامپوزیت تولیدی می گردد. بنابراین در انتخاب مواد تقویت کننده در تولید این نوع کامپوزیت ها، علاوه بر مدول الاستیسیته می بایست به ضریب انبساط حرارتی نیز توجه شود.

طبقه بندی کامپوزیت ها بر مبنای فاز تقویت کنن

کامپوزیت ها براساس نوع تقویت کننده به پنج گروه تقسیم می شوند:  

۱- کامپوزیت های لایه ای

از لایه های مختلف مواد در کنار یکدیگر ساخته شده است. این لایه ها معمولا فلزی، سرامیکی و یا از پلیمرهای تقویت شده هستند که به صورت متناوب در کنار یکدیگر قرار می گیرند. سازه لایه ای را می توان بدون نیاز به فرآیندهای ساخت پیچیده تهیه و خواص جالبی از آن ها به دست آورد. به عنوان مثال برای ساخت تانک ها از سازه های لایه ای استفاده می شود.

۲- کامپوزیت های ذره ای

در این نوع کامپوزیت، فاز پراکنده شده از ذرات ریز تشکیل می شود. طیف وسیعی از ذرات برای استفاده در کامپوزیت ها کاربرد دارند ولی عمده ذرات مورد استفاده در کامپوزیت ها، ذرات اکسیدی به خصوص Al2O3 و ذرات غیراکسیدی مانند SiC، TiC، C، B و WC است. این ذرات بسیار ارزان تر از رشته ها هستند و سبب افزایش صلبیت یا مدول الاستیک ساختار می شوند. استفاده از آن ها در کامپوزیت های فلزی و پلیمری سبب بالا رفتن استحکام و کاهش چقرمگی می شوند. همچنین ماسه و پودرهای رزینی در دسته تقویت کننده های ذره ای قرار می گیرند.

۳- کامپوزیت های الیافی

فاز تقویت کننده در این مواد رشته ای شکل هستند. این دسته از تقویت کننده ها بسیار گسترده اند و صنعت کامپوزیت های پیشرفته براساس این تقویت کننده های مصنوعی الیافی است. این تقویت کننده ها به دو بخش سیم و یا رشته – لیف تقسیم می شوند؛ چنانچه این الیاف فلزی باشند به آن سیم و چنانچه سرامیکی یا پلیمری باشند به آن رشته – لیف گفته می شود.

کاربرد سیم ها به علت داشتن دانسیته زیاد محدود است. به طور کلی دو نوع سیم در صنعت بیشترین استفاده را دارد که یکی تنگستن و دیگری الیاف کوتاه فولادی اند. تنگستن استحکام و مدول الاستیک بالایی داشته و در حجم بالا در صنایع لامپ سازی مورد استفاده قرار می گیرد. الیاف فولادی بسیار ارزان و استحکام و مدول الاستیک آن در حد متوسط بوده و در لنت های ترمز با توجه به محدود شدن مصرف آزبست، استفاده می شود.

۴- کامپوزیت های ورقه ای

در این کامپوزیت، فاز پراکنده شده در زمینه از ورقه های مسطح ساخته می شود. ورقه های فلزی در زمینه پلیمری می توانند هادی جریان الکتریسیته و حرارت باشند در حالی که ورقه های میکا و شیشه در زمینه پلیمری مقاوم در برابر حرارت و نارسانا می باشند.

۵- کامپوزیت های حجمی

در این نوع از کامپوزیت ها زمینه یک فاز پیوسته است و فاز تقویت کننده به صورت یک ماده ثانویه درون آن قرار دارد. کامپوزیت های سرمتی جزء این دسته محسوب می شوند که دارای ساختار متخلخل و اسفنجی سرامیکی بوده و فلز تقویت کننده درون تخلخل های آن وارد شده است. با این کار همان خصوصیات سرامیک ها با چقرمگی بیشتر به دست می آید.

نمونه ای دیگر از کامپوزیت های حجمی در روتور موتورهای الکتریکی قابل مشاهده است. این روتور می بایست مغناطیس شود؛ جنس روتور از گرافیت بوده که ضریب اصطکاک کمی داشته و حین چرخش جریان را منتقل می کند. هدایت الکتریکی گرافیت خیلی بالا نبوده پس آن را با تخلخل درست می کنند و در آن مقداری مس یا نقره می زنند.

۰۳بهمن/۹۳

کامپوزیت های کاربردی در مهندسی عمران

برخی کامپوزیت های کاربردی در مهندسی عمران

  1. پلاستیک های تقویت شده با فیبر (FRP) : پانل، میلگرد ها، لوله ها، ستون ها
  2. بتن مسلح
  3. تیرها و پانل های مشبک برای تحمل نیرو
  4. خرپاها
  5. ستون ها و پایه ها برای تحمل نیروهای عمودی
  6. ETFE
  7. نانو کامپوزیت های ساختمانی

 

  • میلگردهای کامپوزیتی (FRP)

میلگردهای کامپوزیتی، از دسته کامپوزیت های زمینه پلیمری بوده که با الیاف لایه ای تقویت شده اند. این میلگردها از جمله مواد غیر فلزی و مقاوم در برابر خوردگی بوده که در کنار خواص مهمی مانند استحکام کششی زیاد، از آنها به عنوان آرماتور استفاده می کنند. این میلگردها در تقویت پل های بتنی در مناطق سرد سیر کاربرد دارد.

به دلیل استفاده از نمک برای جلوگیری از یخ زدگی جاده ها، شرایط برای خوردگی میلگردهای فلزی بکار رفته در پل ها فراهم می شود. به همین دلیل میلگردهای کامپوزیتی به عنوان یک جایگزین خوب آرماتور های فولادی در بتن پیشنهاد شده اند. از این رو آرماتورهای کامپوزیتی به میزان وسیعی در ساخت ساختمان به ویژه احداث بناهای ساحلی بکار می رود.

FRP

  • انواع میلگردهای کامپوزیتی در صنعت ساختمان

۱٫ GFRP

۲٫ CFRP

۳٫ AFRP

از آنجایی که این میلگردها، مصالحی ناهمسانگرد هستند نوع و مقدار فیبر و رزین مورد استفاده، سازگاری فیبر و کنترل کیفیت لازم هنگام ساخت آن، نقش اصلی در بهبود خواص مکانیکی آن دارد.

برخی از مزایای میلگردهای کامپوزیتی به صورت زیر دسته بندی می شود:

 ۱- مقاومت کششی بیشتر از فولاد

 ۲- یک چهارم وزن آرماتور فولادی

 ۳- عدم تاثیر در میدان های مغناطیسی و فرکانس های رادیویی

 ۴- عدم هدایت الکتریکی و حرارتی

با توجه به موارد ذکر شده، این میلگردها به عنوان یک جایگزین مناسب برای آرماتورهای فولادی در سازه های دریایی، سازه پارکینگ ها، عرشه پل ها، ساخت بزرگراه هایی در مناطقی که تحت تاثیر عوامل محیطی و آب و هوایی هستند و در نهایت سازه هایی که در برابر خوردگی و میدان های مغناطیسی حساسیت زیادی دارند، پیشنهاد می کند.

  • بتن مسلح

بتن ساخته شده از سیمان پرتلند، محصولی شکننده با مقاومت کششی بسیار پایین است. چنانچه فولاد و بتن در کنار هم قرار بگیرند خواص مناسبی حاصل می شود چرا که بتن در تحمل تنش های فشاری و فولاد در تحمل تنش های کششی مناسب عمل می کنند. در واقع لایه های بتنی، فولاد را در برابر خم شدن محافظت کرده و نیز بتن، از خوردگی و آتش گرفتن فولاد حفاظت می کند. بتن های تقویت شده با فولاد ساختاری داکتیل و منعطف تر نسبت به بتن تقویت نشده دارند.

برخی ویژگی های بتن

  • بدون شکل و فرم
  • حمل و نقل آسان
  • مقاوم در برابر حرارت
  • حساس در برابر نیروهای کششی

برخی ویژگی های فولاد

  • استحکام بالا
  • تنوع شکل مانند؛ میلگرد، تیر، نبشی و موارد دیگر
  • مقاومت پایین در برابر آتش سوزی
  • لزوم بکارگیری نیروهای متخصص در تولید آن

با تلفیق این دو ماده با هم، بتن مسلح با خواصی بهتر از هر کدام از اجزا، بدست می آید. شایان ذکر است که در نواحی ساحلی و مناطقی که رطوبت بالایی دارند، میلگردهای فولادی در معرض خوردگی قرار گرفته و زنگ می زنند. این امر مقاومت کششی بتن را پایین می آورد. برای رفع این نقیصه، توصیه می شود که در مناطق مرطوب از بتن مسلح شده با الیاف غیر فلزی استفاده شود.

الیاف کربنی از جمله این جایگزین هاست. قدرت، استحکام و مقاومت الیاف کربن، ده برابر بیشتر از فولاد است و در عین حال وزن آن نیز ۵ برابر سبک تر از فولاد خواهد بود. بافت داخلی الیاف کربن به گونه ای است که در حفظ انرژی داخلی ساختمان بسیار موثر عمل کرده و همچنین در جذب ذرات گرمایشی محیط، نقش موثری را ایفا خواهد کرد.

  • تیرها و پانل های کامپوزیتی

تیرها و پانل های کامپوزیتی با زمینه پلیمری به عنوان مصالح صنعت ساختمان از قدرت، استحکام، سبکی، قابلیت چرخش و جابجایی مناسبی برخوردار بوده و می توانند در جذب انرژی های داخلی ساختمان، نقش چشمگیری ایفا کنند. چنانچه این اجزا با ترکیب استاندارد و صحیح ساخته شوند، می توانند به عنوان یکی از مستحکم ترین مصالح ساختمانی مطرح گشته و به راحتی جایگزین مصالحی چون فولاد، بتن و چوب در پروژه های مختلف می شوند.

همچنین پانل های کامپوزیتی در برابر طوفان، باد و نفوذ حشرات خطرناک به داخل ساختمان مقاوم هستند. جلوگیری از ایجاد شکاف و تیرگی در دیواره خانه های پیش ساخته، از سایر مزیت های این پانل های کامپوزیتی است.

  • خرپا

سازه ای است که از واحدهای مثلثی شکل تشکیل شده است. این سازه توانایی تحمل نیروی های کششی و فشاری را داشته و بسته به آنکه از چه موادی ساخته شده باشد، طول عمر متفاوتی خواهد داشت. خرپاهایی که از اجزای کامپوزیتی ساخته شده باشند، طول عمر بالایی داشته و سبک وزن می باشند. به همین دلیل در مصارف ساختمانی و ساخت اتاق های پیش ساخته و سقف های کاذب مورد استفاده قرار می گیرند.

  • ستون های کامپوزیتی

ستون های کامپوزیتی با زمینه پلیمر یا بتنی در این دسته قرار دارند. در شکل زیر سطح مقطع چند ستون بتی مسلح شده با فولاد نشان داده شده است.   

  • ETFE

یک پلیمر پایه فلوئوروکربن با دوام است که از آن به عنوان مصالح ساختمانی کاربردی در آینده نام برده می شود. این کامپوزیت پلیمری، یک پلاستیک شفاف تفلونی است که جایگزین شیشه و پلاستیک های معمولی در بسیاری از ساختمان ها می شود. از جمله ویژگی های این کامپوزیت می توان به وزن بسیار کم آن اشاره کرد، به طوری که با دارا بودن یک درصد وزن شیشه، هم نور بیشتری را از خود عبور می دهد و هم عایق بهتری محسوب می گردد. از دیگر ویژگی های آن می توان به دارا بودن حالت ارتجاعی اشاره کرد که این قابلیت توانایی تحمل وزنی معادل ۴۰۰ برابر وزن خود کامپوزیت را به آن می دهد. به دلیل سطوح کربنی این محصول، گرد و غبار و لکه بطور خودکار از سطح آن پاک می شود. این کامپوزیت طول عمر بالایی داشته و قابل بازیافت است.

  • نانو کامپوزیت های ساختمانی

در این دسته از کامپوزیت ها، فاز تقویت کننده کمتر از ۱۰۰ نانومتر می باشند. از جمله این مواد تقویت کننده نانو سیلیس آمورف بوده که به عنوان عامل چسبنده به بتن های با عملکرد بالا افزوده می شود. هم چنین نانو لوله های نوین دارای ساختاری هستند که آنها را از فولاد قوی تر و بسیار سبک می کند به طوریکه می توانند خمیدگی و کشش را بدون شکستن تحمل کرده و در آینده جایگزین الیاف کربنی شوند که در کامپوزیت ها به کار برده می شوند.

به طور کلی، دلیل بالا بودن عمر کامپوزیت ها، خواص غیر کشسان آنهاست، در حالی که مواد فلزی حالت کشسان داشته و انرژی جذب شده را میرا می نمایند. بنابراین مواد کامپوزیتی در برابر ارتعاشات زلزله عملکرد بهتری خواهند داشت و بهترین گزینه جهت مقاومت سازه در برابر لرزه خواهند بود.  


منابع
گردآوری شده توسط دپارتمان پژوهشی شرکت پاکمن
R.P. Johnson, Composite Structures of Steel and Concrete, Ed3, Blackwell
P.C. Pandey,Civil Engineering, Department of Civil Engineering, IISc Bangalore
Composite Materials Handbook, Vol 2
Aurel Blaga, GRP Composite Materials in Construction: Properties, Application and Durability, Industrialization Forum, National Research Council, Vol 9, 1978
L.C. Bank, T.R. Gentry, B.P. Thompson, J.S. Russell, A Model Specification for FRP Composites Engineering Structures, Construction and Building Materials, Vol 17, pp: 405-437, 2003
www.irananotech.com
www.omran-ag.ir
www.ezinearticles.com
صفحه مهندسی مواد و متالورژی
مجله علمی ویکی پی جی